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The following two tables contain information about the data sources of the values reported in Table 1 and 2 in 

the paper “Plant and root-zone water isotopes are difficult to measure, explain, and predict: some practical 

recommendations for determining plant water sources” published in the journal ‘Methods in Ecology and 

Evolution’.  
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Table 1: Ranges of natural isotopic variability, expressed as 1 standard deviation (σ) or mean isotopic difference (Δ), that can occur within trees and soils. 

 
Observed natural 

variability (‰ VSMOW) 
 

Source of variability Experimental details  𝛅𝟏𝟖𝐎 𝛅𝟐𝐇 Data source 𝛅𝟏𝟖𝐎 Date source 𝛅𝟐𝐇 

Within the tree crown P. abies branch xylem water (σID of 5 
samples, averaged across 3 trees) 

1.6 4.4 Goldsmith et al. (2019): 
σ5=1.44, σ78=1.25, σ823=2.23 

Goldsmith et al. (2019): 
σ5=2.61, σ78=3.49, σ823=7.16 

Among-tree variability 
within plot 

P. abies branch xylem water (σ of 4-8 trees 
per plot, averaged across 71 plots) 

0.8 2.1 Supplementary material in Allen, Kirchner, Braun, Siegwolf, and Goldsmith (2019) 

Laterally in deep soil Soil water from 40-50cm depth across 1ha 
(σ, n=8) 

1.0 7.1 Data in Goldsmith et al. (2019) 

Laterally in shallow soil Soil water from 0-10cm depth across 1ha 
(σ, n=150) 

1.7 10.6 Data in Goldsmith et al. (2019) 

Isotopic separation during 
root water uptake  

Irrigated sealed pots with Persea 
Americana, Δ=δsoil−δxylem (mean Δ, n=32) 

1.1 9.2 Data extracted from Figure 6 in Vargas, Schaffer, Li, and Sternberg (2017) 
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Table 2: Analytical uncertainties of commonly-used extraction and measurement methods for stable water isotopes in soil and plant samples.  Error was quantified as the mean absolute 
deviation from an isotope reference value (mostly that of spike water) and repeatability was quantified as one standard deviation of that mean. 

Extraction methods Experimental details Metric 
𝛅𝟏𝟖𝐎 (‰ 
VSMOW) 

𝛅𝟐𝐇 (‰ 
VSMOW) 

Data source 𝛅𝟏𝟖𝐎  Data source 𝛅𝟐𝐇 

Suction lysimeter (70–75kPa), 
IRMS 

Soil water, spiked sandy 
loam (n=10) 

Error 0.68 1.9 Table 1 in Thoma, Frentress, Tagliavini, and Scandellari (2018) 

Repeatability 0.71 1.5 Table 1 in Thoma et al. (2018) 
Centrifugation (5000rpm, 

15min), OA-ICOS 

Soil water, spiked silty 

sand, 20% GWC (n=5) 

Error 0.19 1.08 Table II in Orlowski, Pratt, and McDonnell 

(2016): 
Spike water δ18O = - 8.6‰,                          
sampled water δ18O = - 8.79‰ 

Table II in Orlowski et al. (2016): 

Spike water δ2H  = 59.8‰, 
sampled water δ2H  = - 60.88‰ 

Repeatability 0.06 0.36 Table II in Orlowski et al. (2016) 
Microwave extraction (330W, 
15min), OA-ICOS 

Soil water, spiked silty 
sand, 20% GWC (n=5) 

Error 0.57 24.95 Table II in Orlowski et al. (2016): 
Spike water δ18O =-8.6‰,                           
sampled water δ18O =-8.03‰ 

Table II in Orlowski et al. (2016): 
Spike water δ2H =59.8‰, 
sampled waterδ2H =-34.85‰ 

Repeatability 0.32 1.47 Table II in Orlowski et al. (2016) 
Cryogenic vacuum distillation 
(98°C, 45min), OA-ICOS 

Soil water, spiked silty 
sand, 20% GWC (n=5) 

Error 0.71 5.54 Table II in Orlowski et al. (2016): 
Spike water δ18O =-8.6‰,                            
sampled water δ18O =-9.31‰ 

Table II in Orlowski et al. (2016): 
Spike water δ2H =59.8‰, 
sampled waterδ2H =-65.34‰ 

Repeatability 0.18 1.17 Table II in Orlowski et al. (2016) 
Cryogenic vacuum distillation 
(100°C, 210min), IRMS 

Xylem water, root crown, 
irrigated open pots with 
Triticum aestivum L., (n=5) 

Error Not reported Table 1 in Millar, Pratt, Schneider, and McDonnell (2018) 
Repeatability 0.35 0.86 Table 1 in Millar et al. (2018) 

Cryogenic vacuum distillation 
(90°C, 120min), IRMS 

Xylem water, irrigated 
sealed pots with Salix 
viminalis (n=68) 

Error 0.84 Not 
signif. 

Sect. 4.2 in Newberry, Nelson, and Kahmen (2017) 

Repeatability 1.13 Not 
reported 

Sect. 4.2 in Newberry et al. (2017) 

Direct vapor equilibration 
method with bags (6d), OA-
ICOS 

Soil water, spiked coarse 
sand, medium sand, 
coarse silt, 8-50% GWC 
(n=9) 

Error 0.52 2.87 Average values of Δδ18O data in Table 4 in 
Mattei et al. (2019) 

Average values of Δδ2H data in Table 4 in 
Mattei et al. (2019) 

Repeatability 0.76 4.67 Average values of δ18O data in Table 4 in 
Mattei et al. (2019) 

Average values of δ2H data in Table 4 in Mattei 
et al. (2019) 

In-situ equilibration method 
with membranes (DDS, TI), IRIS 

Soil water, slightly clayey 
silt (n=9) 

Error 0.12 1.10 Table 1 in Volkmann and Weiler (2014) 
Repeatability 0.15 1.32 Table 1 in Volkmann and Weiler (2014) 

Analysis methods      

IRMS (Thermo Fischer Delta 
Plus Advantage mass 
spectrometer (Thermo Fisher 
Scientific Inc., Massachusetts, 
USA) connected to a GFL 1086 
equilibration device) 

Water, 10 replicates 
(n=13) 

Repeatability 0.02 0.46 Average values of Std. dev. δ 18O in Table 
1 in Penna et al. (2012) 

Average values of Std. dev. δ2H in Table 1 in 
Penna et al. (2012) 

OA-ICOS (Los Gatos Research 
Inc., off-axis integrated cavity 
output spectroscope model 
DLT-100 version 908-0008 or 
newer) 

Water, last 8 of 18 
injections (n=72) 

Repeatability 0.33 0.33 Average values of Std. dev. LGR-1, LGR-2 
and LGR-3 in Tables 3b in Penna et al. 
(2012) 

Average values of Std. dev. LGR-1, LGR-2 and 
LGR-3 in Tables 3a in Penna et al. (2012) 

IRIS (Picarro Inc., model 
L1102‑i liquid analyzer or 
newer) 

Water, last 8 of 18 
injections (n=72) 

Repeatability 0.1 0.13 Average values of Std. dev. PIC-1, PIC-2 
and PIC-3 in Tables 3b in Penna et al. 
(2012) 

Average values of Std. dev. PIC-1, PIC-2 and 
PIC-3 in Tables 3a in Penna et al. (2012) 
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