Changes
On May 21, 2024 at 12:27:47 PM UTC, Michael Haugeneder:
-
Updated description of resource aws.zip in Turbulence in The Strongly Heterogeneous Near-Surface Boundary Layer over Patchy Snow from
Raw eddy covariance data from the automatic weather station (AWS)
toRaw eddy covariance data from the automatic weather station (AWS). Instrument is Young Model 81000
f | 1 | { | f | 1 | { |
2 | "author": "[{\"affiliation\": \"SLF\", \"affiliation_02\": \"\", | 2 | "author": "[{\"affiliation\": \"SLF\", \"affiliation_02\": \"\", | ||
3 | \"affiliation_03\": \"\", \"email\": \"michael.haugeneder@slf.ch\", | 3 | \"affiliation_03\": \"\", \"email\": \"michael.haugeneder@slf.ch\", | ||
4 | \"given_name\": \"Michael\", \"identifier\": \"0000-0003-3228-9868\", | 4 | \"given_name\": \"Michael\", \"identifier\": \"0000-0003-3228-9868\", | ||
5 | \"name\": \"Haugeneder\"}, {\"affiliation\": \"SLF\", | 5 | \"name\": \"Haugeneder\"}, {\"affiliation\": \"SLF\", | ||
6 | \"affiliation_02\": \"\", \"affiliation_03\": \"\", \"email\": | 6 | \"affiliation_02\": \"\", \"affiliation_03\": \"\", \"email\": | ||
7 | \"lehning@slf.ch\", \"given_name\": \"Michael\", \"identifier\": | 7 | \"lehning@slf.ch\", \"given_name\": \"Michael\", \"identifier\": | ||
8 | \"0000-0002-8442-0875\", \"name\": \"Lehning\"}, {\"affiliation\": | 8 | \"0000-0002-8442-0875\", \"name\": \"Lehning\"}, {\"affiliation\": | ||
9 | \"SLF\", \"affiliation_02\": \"\", \"affiliation_03\": \"\", | 9 | \"SLF\", \"affiliation_02\": \"\", \"affiliation_03\": \"\", | ||
10 | \"email\": \"mott@slf.ch\", \"given_name\": \"Rebecca\", | 10 | \"email\": \"mott@slf.ch\", \"given_name\": \"Rebecca\", | ||
11 | \"identifier\": \"\", \"name\": \"Mott\"}]", | 11 | \"identifier\": \"\", \"name\": \"Mott\"}]", | ||
12 | "author_email": null, | 12 | "author_email": null, | ||
13 | "creator_user_id": "ebd22060-c56d-419b-a56e-9e171f19e7e5", | 13 | "creator_user_id": "ebd22060-c56d-419b-a56e-9e171f19e7e5", | ||
14 | "date": "[{\"date\": \"2021-05-21\", \"date_type\": \"collected\", | 14 | "date": "[{\"date\": \"2021-05-21\", \"date_type\": \"collected\", | ||
15 | \"end_date\": \"2021-06-11\"}]", | 15 | \"end_date\": \"2021-06-11\"}]", | ||
16 | "doi": "10.16904/envidat.399", | 16 | "doi": "10.16904/envidat.399", | ||
17 | "funding": "[{\"grant_number\": \"188554\", \"institution\": | 17 | "funding": "[{\"grant_number\": \"188554\", \"institution\": | ||
18 | \"SNF\", \"institution_url\": | 18 | \"SNF\", \"institution_url\": | ||
19 | \"https://data.snf.ch/grants/grant/188554\"}]", | 19 | \"https://data.snf.ch/grants/grant/188554\"}]", | ||
20 | "groups": [], | 20 | "groups": [], | ||
21 | "id": "b060a56e-7c4f-4291-ac8d-c4d492455c67", | 21 | "id": "b060a56e-7c4f-4291-ac8d-c4d492455c67", | ||
22 | "isopen": false, | 22 | "isopen": false, | ||
23 | "language": "en", | 23 | "language": "en", | ||
24 | "license_id": "wsl-data", | 24 | "license_id": "wsl-data", | ||
25 | "license_title": "WSL Data Policy", | 25 | "license_title": "WSL Data Policy", | ||
26 | "license_url": | 26 | "license_url": | ||
27 | ps://www.wsl.ch/en/about-wsl/programmes-and-initiatives/envidat.html", | 27 | ps://www.wsl.ch/en/about-wsl/programmes-and-initiatives/envidat.html", | ||
28 | "maintainer": "{\"affiliation\": \"SLF\", \"email\": | 28 | "maintainer": "{\"affiliation\": \"SLF\", \"email\": | ||
29 | \"michael.haugeneder@slf.ch\", \"given_name\": \"Michael\", | 29 | \"michael.haugeneder@slf.ch\", \"given_name\": \"Michael\", | ||
30 | \"identifier\": \"0000-0003-3228-9868\", \"name\": \"Haugeneder\"}", | 30 | \"identifier\": \"0000-0003-3228-9868\", \"name\": \"Haugeneder\"}", | ||
31 | "maintainer_email": null, | 31 | "maintainer_email": null, | ||
32 | "metadata_created": "2023-05-05T08:07:30.565750", | 32 | "metadata_created": "2023-05-05T08:07:30.565750", | ||
n | 33 | "metadata_modified": "2024-05-21T12:27:05.191778", | n | 33 | "metadata_modified": "2024-05-21T12:27:47.581363", |
34 | "name": "turbulence-patchy-snow-cover", | 34 | "name": "turbulence-patchy-snow-cover", | ||
35 | "notes": "This dataset contains the raw data that is analyzed in the | 35 | "notes": "This dataset contains the raw data that is analyzed in the | ||
36 | publication entitled \"Turbulence in The Strongly Heterogeneous | 36 | publication entitled \"Turbulence in The Strongly Heterogeneous | ||
37 | Near-Surface Boundary Layer over Patchy Snow\". Please find | 37 | Near-Surface Boundary Layer over Patchy Snow\". Please find | ||
38 | information on the individual data files in the description of the | 38 | information on the individual data files in the description of the | ||
39 | files.", | 39 | files.", | ||
40 | "num_resources": 6, | 40 | "num_resources": 6, | ||
41 | "num_tags": 5, | 41 | "num_tags": 5, | ||
42 | "organization": { | 42 | "organization": { | ||
43 | "approval_status": "approved", | 43 | "approval_status": "approved", | ||
44 | "created": "2021-08-23T15:25:48.676190", | 44 | "created": "2021-08-23T15:25:48.676190", | ||
45 | "description": "The research group \u00abSnow Hydrology\u00bb | 45 | "description": "The research group \u00abSnow Hydrology\u00bb | ||
46 | investigates snow as a component of the hydrological cycle. In the | 46 | investigates snow as a component of the hydrological cycle. In the | ||
47 | Alps a significant percentage of precipitation comes in the form of | 47 | Alps a significant percentage of precipitation comes in the form of | ||
48 | snow. The timing of snow melt thus influences the annual dynamics of | 48 | snow. The timing of snow melt thus influences the annual dynamics of | ||
49 | runoff from alpine watersheds. Of particular interest for our research | 49 | runoff from alpine watersheds. Of particular interest for our research | ||
50 | is to enhance estimations of snow water resources and subsequent melt | 50 | is to enhance estimations of snow water resources and subsequent melt | ||
51 | water discharge.\r\n\r\nThe research group covers a broad range of | 51 | water discharge.\r\n\r\nThe research group covers a broad range of | ||
52 | projects and methods. The latest measuring techniques are used to | 52 | projects and methods. The latest measuring techniques are used to | ||
53 | investigate snow distribution patterns in alpine terrain, e.g. laser | 53 | investigate snow distribution patterns in alpine terrain, e.g. laser | ||
54 | scanning or radar technology. We use different types of numerical | 54 | scanning or radar technology. We use different types of numerical | ||
55 | models to calculate snow water resources based on input data from | 55 | models to calculate snow water resources based on input data from | ||
56 | meteorological monitoring networks. These models are being used to | 56 | meteorological monitoring networks. These models are being used to | ||
57 | predict the consequences of climate change on the water balance of | 57 | predict the consequences of climate change on the water balance of | ||
58 | mountain watersheds. The models also constitute a valuable tool for | 58 | mountain watersheds. The models also constitute a valuable tool for | ||
59 | our operational services, such as periodic snow hydrological | 59 | our operational services, such as periodic snow hydrological | ||
60 | bulletins, which contribute to the federal flood prevention and | 60 | bulletins, which contribute to the federal flood prevention and | ||
61 | forecasting system.\r\n\r\nThe research group \u00abSnow | 61 | forecasting system.\r\n\r\nThe research group \u00abSnow | ||
62 | Hydrology\u00bb is based in Davos and ensures the link between other | 62 | Hydrology\u00bb is based in Davos and ensures the link between other | ||
63 | Davosian research groups and the research unit \u201dMountain | 63 | Davosian research groups and the research unit \u201dMountain | ||
64 | Hydrology and Mass Movements\u201d in Birmensdorf.", | 64 | Hydrology and Mass Movements\u201d in Birmensdorf.", | ||
65 | "id": "d66115d3-c4f9-4f6e-8ff1-5791549e0386", | 65 | "id": "d66115d3-c4f9-4f6e-8ff1-5791549e0386", | ||
66 | "image_url": "", | 66 | "image_url": "", | ||
67 | "is_organization": true, | 67 | "is_organization": true, | ||
68 | "name": "snow-hydrology", | 68 | "name": "snow-hydrology", | ||
69 | "state": "active", | 69 | "state": "active", | ||
70 | "title": "Snow Hydrology", | 70 | "title": "Snow Hydrology", | ||
71 | "type": "organization" | 71 | "type": "organization" | ||
72 | }, | 72 | }, | ||
73 | "owner_org": "d66115d3-c4f9-4f6e-8ff1-5791549e0386", | 73 | "owner_org": "d66115d3-c4f9-4f6e-8ff1-5791549e0386", | ||
74 | "private": false, | 74 | "private": false, | ||
75 | "publication": "{\"publication_year\": \"2023\", \"publisher\": | 75 | "publication": "{\"publication_year\": \"2023\", \"publisher\": | ||
76 | \"EnviDat\"}", | 76 | \"EnviDat\"}", | ||
77 | "publication_state": "published", | 77 | "publication_state": "published", | ||
78 | "related_datasets": "", | 78 | "related_datasets": "", | ||
79 | "related_publications": " | 79 | "related_publications": " | ||
80 | https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:35982", | 80 | https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:35982", | ||
81 | "relationships_as_object": [], | 81 | "relationships_as_object": [], | ||
82 | "relationships_as_subject": [], | 82 | "relationships_as_subject": [], | ||
83 | "resource_type": "dataset", | 83 | "resource_type": "dataset", | ||
84 | "resource_type_general": "dataset", | 84 | "resource_type_general": "dataset", | ||
85 | "resources": [ | 85 | "resources": [ | ||
86 | { | 86 | { | ||
87 | "cache_last_updated": null, | 87 | "cache_last_updated": null, | ||
88 | "cache_url": null, | 88 | "cache_url": null, | ||
89 | "created": "2023-06-19T18:16:01.947035", | 89 | "created": "2023-06-19T18:16:01.947035", | ||
90 | "description": "Raw eddy covariance data from tower 2 at 1m | 90 | "description": "Raw eddy covariance data from tower 2 at 1m | ||
91 | height. Instrument is Campell Scientific IRGASON", | 91 | height. Instrument is Campell Scientific IRGASON", | ||
92 | "doi": "", | 92 | "doi": "", | ||
93 | "format": "ZIP", | 93 | "format": "ZIP", | ||
94 | "hash": "", | 94 | "hash": "", | ||
95 | "id": "d788f7aa-6c97-4274-b560-e60910ee9c76", | 95 | "id": "d788f7aa-6c97-4274-b560-e60910ee9c76", | ||
96 | "last_modified": "2023-06-19T11:30:52.347000", | 96 | "last_modified": "2023-06-19T11:30:52.347000", | ||
97 | "metadata_modified": "2023-06-19T18:30:52.876524", | 97 | "metadata_modified": "2023-06-19T18:30:52.876524", | ||
98 | "mimetype": "application/x-zip-compressed", | 98 | "mimetype": "application/x-zip-compressed", | ||
99 | "mimetype_inner": null, | 99 | "mimetype_inner": null, | ||
100 | "name": "t2_1m.zip", | 100 | "name": "t2_1m.zip", | ||
101 | "package_id": "b060a56e-7c4f-4291-ac8d-c4d492455c67", | 101 | "package_id": "b060a56e-7c4f-4291-ac8d-c4d492455c67", | ||
102 | "position": 0, | 102 | "position": 0, | ||
103 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | 103 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | ||
104 | "resource_type": null, | 104 | "resource_type": null, | ||
105 | "restricted": | 105 | "restricted": | ||
106 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | 106 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | ||
107 | "size": 1076784960, | 107 | "size": 1076784960, | ||
108 | "state": "active", | 108 | "state": "active", | ||
109 | "url": | 109 | "url": | ||
110 | c67/resource/d788f7aa-6c97-4274-b560-e60910ee9c76/download/t2_1m.zip", | 110 | c67/resource/d788f7aa-6c97-4274-b560-e60910ee9c76/download/t2_1m.zip", | ||
111 | "url_type": "upload" | 111 | "url_type": "upload" | ||
112 | }, | 112 | }, | ||
113 | { | 113 | { | ||
114 | "cache_last_updated": null, | 114 | "cache_last_updated": null, | ||
115 | "cache_url": null, | 115 | "cache_url": null, | ||
116 | "created": "2023-06-19T18:31:11.376934", | 116 | "created": "2023-06-19T18:31:11.376934", | ||
117 | "description": "Raw eddy covariance data from the short-path | 117 | "description": "Raw eddy covariance data from the short-path | ||
118 | ultrasonic (\"Kaijo\") at 0.3m above the snow", | 118 | ultrasonic (\"Kaijo\") at 0.3m above the snow", | ||
119 | "doi": "", | 119 | "doi": "", | ||
120 | "format": "ZIP", | 120 | "format": "ZIP", | ||
121 | "hash": "", | 121 | "hash": "", | ||
122 | "id": "4cf92a16-33be-40ca-a415-3dd979eccc5c", | 122 | "id": "4cf92a16-33be-40ca-a415-3dd979eccc5c", | ||
123 | "last_modified": "2023-06-19T14:06:34.093000", | 123 | "last_modified": "2023-06-19T14:06:34.093000", | ||
124 | "metadata_modified": "2023-06-19T21:06:34.388730", | 124 | "metadata_modified": "2023-06-19T21:06:34.388730", | ||
125 | "mimetype": "application/x-zip-compressed", | 125 | "mimetype": "application/x-zip-compressed", | ||
126 | "mimetype_inner": null, | 126 | "mimetype_inner": null, | ||
127 | "name": "kaijo.zip", | 127 | "name": "kaijo.zip", | ||
128 | "package_id": "b060a56e-7c4f-4291-ac8d-c4d492455c67", | 128 | "package_id": "b060a56e-7c4f-4291-ac8d-c4d492455c67", | ||
129 | "position": 1, | 129 | "position": 1, | ||
130 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | 130 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | ||
131 | "resource_type": null, | 131 | "resource_type": null, | ||
132 | "restricted": | 132 | "restricted": | ||
133 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | 133 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | ||
134 | "size": 31515684, | 134 | "size": 31515684, | ||
135 | "state": "active", | 135 | "state": "active", | ||
136 | "url": | 136 | "url": | ||
137 | c67/resource/4cf92a16-33be-40ca-a415-3dd979eccc5c/download/kaijo.zip", | 137 | c67/resource/4cf92a16-33be-40ca-a415-3dd979eccc5c/download/kaijo.zip", | ||
138 | "url_type": "upload" | 138 | "url_type": "upload" | ||
139 | }, | 139 | }, | ||
140 | { | 140 | { | ||
141 | "cache_last_updated": null, | 141 | "cache_last_updated": null, | ||
142 | "cache_url": null, | 142 | "cache_url": null, | ||
143 | "created": "2023-06-19T18:37:26.468895", | 143 | "created": "2023-06-19T18:37:26.468895", | ||
144 | "description": "IR-data that is visualized in the video", | 144 | "description": "IR-data that is visualized in the video", | ||
145 | "doi": "", | 145 | "doi": "", | ||
146 | "format": "ZIP", | 146 | "format": "ZIP", | ||
147 | "hash": "", | 147 | "hash": "", | ||
148 | "id": "6f7f0d92-6dd4-440a-b581-19b30b65c942", | 148 | "id": "6f7f0d92-6dd4-440a-b581-19b30b65c942", | ||
149 | "last_modified": "2023-06-19T14:05:50.202000", | 149 | "last_modified": "2023-06-19T14:05:50.202000", | ||
150 | "metadata_modified": "2023-06-19T21:05:50.699096", | 150 | "metadata_modified": "2023-06-19T21:05:50.699096", | ||
151 | "mimetype": "application/x-zip-compressed", | 151 | "mimetype": "application/x-zip-compressed", | ||
152 | "mimetype_inner": null, | 152 | "mimetype_inner": null, | ||
153 | "name": "irdata.zip", | 153 | "name": "irdata.zip", | ||
154 | "package_id": "b060a56e-7c4f-4291-ac8d-c4d492455c67", | 154 | "package_id": "b060a56e-7c4f-4291-ac8d-c4d492455c67", | ||
155 | "position": 2, | 155 | "position": 2, | ||
156 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | 156 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | ||
157 | "resource_type": null, | 157 | "resource_type": null, | ||
158 | "restricted": | 158 | "restricted": | ||
159 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | 159 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | ||
160 | "size": 1240628362, | 160 | "size": 1240628362, | ||
161 | "state": "active", | 161 | "state": "active", | ||
162 | "url": | 162 | "url": | ||
163 | 67/resource/6f7f0d92-6dd4-440a-b581-19b30b65c942/download/irdata.zip", | 163 | 67/resource/6f7f0d92-6dd4-440a-b581-19b30b65c942/download/irdata.zip", | ||
164 | "url_type": "upload" | 164 | "url_type": "upload" | ||
165 | }, | 165 | }, | ||
166 | { | 166 | { | ||
167 | "cache_last_updated": null, | 167 | "cache_last_updated": null, | ||
168 | "cache_url": null, | 168 | "cache_url": null, | ||
169 | "created": "2024-05-21T12:22:17.865476", | 169 | "created": "2024-05-21T12:22:17.865476", | ||
170 | "description": "Raw eddy covariance data from the automatic | 170 | "description": "Raw eddy covariance data from the automatic | ||
n | 171 | weather station (AWS)", | n | 171 | weather station (AWS). Instrument is Young Model 81000", |
172 | "doi": "", | 172 | "doi": "", | ||
173 | "format": "ZIP", | 173 | "format": "ZIP", | ||
174 | "hash": "", | 174 | "hash": "", | ||
175 | "id": "79446543-af17-47ec-a794-2e56dfe2333d", | 175 | "id": "79446543-af17-47ec-a794-2e56dfe2333d", | ||
t | 176 | "last_modified": "2024-05-21T14:25:09.318000", | t | 176 | "last_modified": "2024-05-21T14:27:46.909000", |
177 | "metadata_modified": "2024-05-21T12:25:10.017610", | 177 | "metadata_modified": "2024-05-21T12:27:47.587109", | ||
178 | "mimetype": "application/zip", | 178 | "mimetype": "application/zip", | ||
179 | "mimetype_inner": null, | 179 | "mimetype_inner": null, | ||
180 | "name": "aws.zip", | 180 | "name": "aws.zip", | ||
181 | "package_id": "b060a56e-7c4f-4291-ac8d-c4d492455c67", | 181 | "package_id": "b060a56e-7c4f-4291-ac8d-c4d492455c67", | ||
182 | "position": 3, | 182 | "position": 3, | ||
183 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | 183 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | ||
184 | "resource_type": null, | 184 | "resource_type": null, | ||
185 | "restricted": | 185 | "restricted": | ||
186 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | 186 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | ||
187 | "size": 869784619, | 187 | "size": 869784619, | ||
188 | "state": "active", | 188 | "state": "active", | ||
189 | "url": | 189 | "url": | ||
190 | 55c67/resource/79446543-af17-47ec-a794-2e56dfe2333d/download/aws.zip", | 190 | 55c67/resource/79446543-af17-47ec-a794-2e56dfe2333d/download/aws.zip", | ||
191 | "url_type": "upload" | 191 | "url_type": "upload" | ||
192 | }, | 192 | }, | ||
193 | { | 193 | { | ||
194 | "cache_last_updated": null, | 194 | "cache_last_updated": null, | ||
195 | "cache_url": null, | 195 | "cache_url": null, | ||
196 | "created": "2024-05-21T12:25:36.104650", | 196 | "created": "2024-05-21T12:25:36.104650", | ||
197 | "description": "Raw eddy covariance data from tower 2 at 2m | 197 | "description": "Raw eddy covariance data from tower 2 at 2m | ||
198 | height. Instrument is Campell Scientifc CSAT 3", | 198 | height. Instrument is Campell Scientifc CSAT 3", | ||
199 | "doi": "", | 199 | "doi": "", | ||
200 | "format": "ZIP", | 200 | "format": "ZIP", | ||
201 | "hash": "", | 201 | "hash": "", | ||
202 | "id": "92f20d5d-be74-4586-a567-41195b9d7469", | 202 | "id": "92f20d5d-be74-4586-a567-41195b9d7469", | ||
203 | "last_modified": "2024-05-21T14:25:58.302000", | 203 | "last_modified": "2024-05-21T14:25:58.302000", | ||
204 | "metadata_modified": "2024-05-21T12:25:58.994428", | 204 | "metadata_modified": "2024-05-21T12:25:58.994428", | ||
205 | "mimetype": "application/zip", | 205 | "mimetype": "application/zip", | ||
206 | "mimetype_inner": null, | 206 | "mimetype_inner": null, | ||
207 | "name": "t2_2m.zip", | 207 | "name": "t2_2m.zip", | ||
208 | "package_id": "b060a56e-7c4f-4291-ac8d-c4d492455c67", | 208 | "package_id": "b060a56e-7c4f-4291-ac8d-c4d492455c67", | ||
209 | "position": 4, | 209 | "position": 4, | ||
210 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | 210 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | ||
211 | "resource_type": null, | 211 | "resource_type": null, | ||
212 | "restricted": | 212 | "restricted": | ||
213 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | 213 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | ||
214 | "size": 722480736, | 214 | "size": 722480736, | ||
215 | "state": "active", | 215 | "state": "active", | ||
216 | "url": | 216 | "url": | ||
217 | c67/resource/92f20d5d-be74-4586-a567-41195b9d7469/download/t2_2m.zip", | 217 | c67/resource/92f20d5d-be74-4586-a567-41195b9d7469/download/t2_2m.zip", | ||
218 | "url_type": "upload" | 218 | "url_type": "upload" | ||
219 | }, | 219 | }, | ||
220 | { | 220 | { | ||
221 | "cache_last_updated": null, | 221 | "cache_last_updated": null, | ||
222 | "cache_url": null, | 222 | "cache_url": null, | ||
223 | "created": "2024-05-21T12:26:43.110337", | 223 | "created": "2024-05-21T12:26:43.110337", | ||
224 | "description": "Raw eddy covariance data from tower 2 at 3m | 224 | "description": "Raw eddy covariance data from tower 2 at 3m | ||
225 | height. Instrument is Campell Scientifc CSAT 3", | 225 | height. Instrument is Campell Scientifc CSAT 3", | ||
226 | "doi": "", | 226 | "doi": "", | ||
227 | "format": "ZIP", | 227 | "format": "ZIP", | ||
228 | "hash": "", | 228 | "hash": "", | ||
229 | "id": "a850ebcc-a124-4e27-8c90-8781e10522ae", | 229 | "id": "a850ebcc-a124-4e27-8c90-8781e10522ae", | ||
230 | "last_modified": "2024-05-21T14:27:04.517000", | 230 | "last_modified": "2024-05-21T14:27:04.517000", | ||
231 | "metadata_modified": "2024-05-21T12:27:05.197781", | 231 | "metadata_modified": "2024-05-21T12:27:05.197781", | ||
232 | "mimetype": "application/zip", | 232 | "mimetype": "application/zip", | ||
233 | "mimetype_inner": null, | 233 | "mimetype_inner": null, | ||
234 | "name": "t2_3m.zip", | 234 | "name": "t2_3m.zip", | ||
235 | "package_id": "b060a56e-7c4f-4291-ac8d-c4d492455c67", | 235 | "package_id": "b060a56e-7c4f-4291-ac8d-c4d492455c67", | ||
236 | "position": 5, | 236 | "position": 5, | ||
237 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | 237 | "resource_size": "{\"size_value\":\"\",\"size_units\":\"\"}", | ||
238 | "resource_type": null, | 238 | "resource_type": null, | ||
239 | "restricted": | 239 | "restricted": | ||
240 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | 240 | {\"level\":\"public\",\"allowed_users\":\"\",\"shared_secret\":\"\"}", | ||
241 | "size": 906522928, | 241 | "size": 906522928, | ||
242 | "state": "active", | 242 | "state": "active", | ||
243 | "url": | 243 | "url": | ||
244 | c67/resource/a850ebcc-a124-4e27-8c90-8781e10522ae/download/t2_3m.zip", | 244 | c67/resource/a850ebcc-a124-4e27-8c90-8781e10522ae/download/t2_3m.zip", | ||
245 | "url_type": "upload" | 245 | "url_type": "upload" | ||
246 | } | 246 | } | ||
247 | ], | 247 | ], | ||
248 | "spatial": | 248 | "spatial": | ||
249 | \":\"Point\",\"coordinates\":[9.922499656677246,46.719613134706506]}", | 249 | \":\"Point\",\"coordinates\":[9.922499656677246,46.719613134706506]}", | ||
250 | "spatial_info": "Switzerland", | 250 | "spatial_info": "Switzerland", | ||
251 | "state": "active", | 251 | "state": "active", | ||
252 | "subtitle": "", | 252 | "subtitle": "", | ||
253 | "tags": [ | 253 | "tags": [ | ||
254 | { | 254 | { | ||
255 | "display_name": "ATMOSPHERIC TURBULENCE", | 255 | "display_name": "ATMOSPHERIC TURBULENCE", | ||
256 | "id": "33a2c66c-7196-447c-ae3c-603212e9492d", | 256 | "id": "33a2c66c-7196-447c-ae3c-603212e9492d", | ||
257 | "name": "ATMOSPHERIC TURBULENCE", | 257 | "name": "ATMOSPHERIC TURBULENCE", | ||
258 | "state": "active", | 258 | "state": "active", | ||
259 | "vocabulary_id": null | 259 | "vocabulary_id": null | ||
260 | }, | 260 | }, | ||
261 | { | 261 | { | ||
262 | "display_name": "EDDY-COVARIANCE MEASUREMENTS", | 262 | "display_name": "EDDY-COVARIANCE MEASUREMENTS", | ||
263 | "id": "3d92ab0f-64bb-4f23-a670-1d676d15f858", | 263 | "id": "3d92ab0f-64bb-4f23-a670-1d676d15f858", | ||
264 | "name": "EDDY-COVARIANCE MEASUREMENTS", | 264 | "name": "EDDY-COVARIANCE MEASUREMENTS", | ||
265 | "state": "active", | 265 | "state": "active", | ||
266 | "vocabulary_id": null | 266 | "vocabulary_id": null | ||
267 | }, | 267 | }, | ||
268 | { | 268 | { | ||
269 | "display_name": "PATCHY SNOW COVER", | 269 | "display_name": "PATCHY SNOW COVER", | ||
270 | "id": "61d8a21a-8ef9-4900-8050-bf3e84c05fc5", | 270 | "id": "61d8a21a-8ef9-4900-8050-bf3e84c05fc5", | ||
271 | "name": "PATCHY SNOW COVER", | 271 | "name": "PATCHY SNOW COVER", | ||
272 | "state": "active", | 272 | "state": "active", | ||
273 | "vocabulary_id": null | 273 | "vocabulary_id": null | ||
274 | }, | 274 | }, | ||
275 | { | 275 | { | ||
276 | "display_name": "SNOW MELT", | 276 | "display_name": "SNOW MELT", | ||
277 | "id": "4452e5c9-c707-4c61-bd1c-28816181a043", | 277 | "id": "4452e5c9-c707-4c61-bd1c-28816181a043", | ||
278 | "name": "SNOW MELT", | 278 | "name": "SNOW MELT", | ||
279 | "state": "active", | 279 | "state": "active", | ||
280 | "vocabulary_id": null | 280 | "vocabulary_id": null | ||
281 | }, | 281 | }, | ||
282 | { | 282 | { | ||
283 | "display_name": "SURFACE HEAT EXCHANGE", | 283 | "display_name": "SURFACE HEAT EXCHANGE", | ||
284 | "id": "cb61d6bd-bf4d-4fd6-a8e2-8dbbbd90d418", | 284 | "id": "cb61d6bd-bf4d-4fd6-a8e2-8dbbbd90d418", | ||
285 | "name": "SURFACE HEAT EXCHANGE", | 285 | "name": "SURFACE HEAT EXCHANGE", | ||
286 | "state": "active", | 286 | "state": "active", | ||
287 | "vocabulary_id": null | 287 | "vocabulary_id": null | ||
288 | } | 288 | } | ||
289 | ], | 289 | ], | ||
290 | "title": "Turbulence in The Strongly Heterogeneous Near-Surface | 290 | "title": "Turbulence in The Strongly Heterogeneous Near-Surface | ||
291 | Boundary Layer over Patchy Snow", | 291 | Boundary Layer over Patchy Snow", | ||
292 | "type": "dataset", | 292 | "type": "dataset", | ||
293 | "url": null, | 293 | "url": null, | ||
294 | "version": "1.0" | 294 | "version": "1.0" | ||
295 | } | 295 | } |