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1. Sources of serial correlation 

Serial correlation (also called autocorrelation) occurs when residuals from adjacent measurements in a time series 
are not independent of one another (that is, if the ith residual is high, it is likely that the i+1st residual will also be 
high, and likewise low residuals tend to follow other low residuals).  Serial correlation is very common in 
environmental time series.  It can arise in at least four different ways: 

1.1. The variable of interest has a long-term trend--which may be either linear or nonlinear through time--that has 
been overlooked in the analysis. 

1.2. The variable of interest varies seasonally, and this seasonal effect has been overlooked in the analysis. 
1.3. The variable under study responds to one or more missing explanatory variables (i.e., variables not included 

in the analysis) that are serially correlated (correlated with themselves through time, e.g., due to long-
term trends or seasonal variations). 

1.4. The variable of interest includes random noise that is serially correlated, or that has persistent effects.  This 
commonly arises when your variable integrates or averages some other variable through time.  For 
example, populations are affected by random changes in birth and death rates, but note that a random 
extra birth has a persistent effect; it inflates the population tally for as long as the organism's lifespan.  
Likewise, changes in chemical inputs to a lake will persist for timescales comparable to the lake's 
flushing time; the same applies to the oceans or the atmosphere.  Whenever the sampling period is shorter 
than the timescales on which the system responds to external forcing, many samples will be effectively 
redundant. 
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Figure 1.  Do the solid dots show a shift from a declining 
trend to a climbing trend (dashed lines), or one irregular 
climbing trend?  In fact they show neither one; they 
show no trend (Y=constant), to which serially correlated 
residuals (ei=ρei-1+ξi) have been added with ρ=0.9 and 
pure random noise ξ as shown by open circles (right 
scale, no exaggeration). 
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Figure 2.  Serial correlation can produce nonlinear, 
visually coherent patterns.  Actual trend behind the 
apparent sine wave shown above is Y=constant, as in 
Figure 1.  Residuals generated from serially correlated 
random noise, as in Figure 1.  Random noise ξ shown by 
open circles. 

2. Consequences of serial correlation 

Serial correlation is a significant problem because nearly all statistical techniques assume that any random errors are 
independent.  Instead, when serial correlation is present, each error (or residual) depends on the previous residual.  
One way to think about this problem is that because the residuals are largely redundant (i.e., not independent of one 
another), the effective degrees of freedom are far fewer than the number of observations. 

If serial correlation is present but is not accounted for, several nasty things will happen: 

2.1. Spurious--but visually convincing--trends may appear in your data (see Figures 1 and 2, above).  These may 
occur in many different forms, including linear trends, abrupt steps, periodic or aperiodic cycles, etc. 

2.2. Although the regression coefficients (or other results of your analysis) will still be unbiased, you will 
underestimate their uncertainties, potentially by large factors.  For serial correlation coefficients of ρ≈0.6 
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and above, the actual standard error of the regression slope will be more than twice sb, the estimate 
provided by conventional regression techniques This effect increases with sample size, and increases 
drastically with ρ (see Figure 3, below).  (The symbol ρ denotes the true correlation between residuals; it 
is estimated by r, defined in section 3.2, below.) 

2.3. Because uncertainties will be underestimated, confidence intervals and prediction intervals will be too 
narrow.   

2.4. Estimates of "goodness of fit" will be exaggerated. 
2.5. Estimates of statistical significance will be exaggerated, perhaps vastly so.  Your actual false-positive rate 

can be much higher than the α-value used in your statistical tests (see Figure 4).  For serial correlation of 
ρ≈0.5, tests for the significance of the regression slope at α=5% will have an actual false positive rate of 
roughly 30% (six times α); the rate for α=1% will be roughly 15% (15 times α), and the rate for α=0.1% 
will be roughly 7% (70 times α).  If ρ=0.9, the false positive rate can be over 50 percent, and largely 
independent of α.  Getting more data will not help; this effect increases with sample size.  You can also 
make things much worse by selectively picking out the parts of a time series in which your eye finds an 
apparent trend, or selectively fitting to nonlinear trends that your eye finds in the data. 
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Figure 3.  Ratio of actual standard error of regression 
slope to estimate of standard error (sb) calculated from 
ordinary linear regression, if serial correlation in 
residuals is overlooked.   
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Figure 4.  Fraction of Monte Carlo trials in which 
regression slope b was different from zero (at statistical 
significance level α=0.05, 0.01, and 0.001), when null 
hypothesis was actually true (true slope was β=0, n=100 
points). 

Serial correlation can corrupt many different kinds of analyses (including t-tests, ANOVA's, and the like), but its 
effects on linear regression are most widely appreciated.  Serial correlation is particularly problematic when one is 
trying to detect long-term trends; in fact, some noted authorities declare that serial correlation makes linear 
regression invalid for trend detection.  These noted authorities are wrong.  Serially correlated data can be analyzed 
with many different methods, including regression, as long as the serial correlation is properly taken into account.   

This toolkit presents basic techniques for detecting and treating serial correlation in environmental time series data.  
Although serial correlation is an almost universal feature of environmental data, it is difficult to find a serious 
treatment of the subject outside of several weighty treatises on regression methods (most of the work in this area has 
been done by econometricians).  Because this material is relatively inaccessible, I will present it in some detail here.  
The emphasis is on trend analysis (that is, determining how a variable changes with time) using linear regression.   

Important note:   What we are worrying about here is serial correlation in the residuals of a variable, not serial 
correlation in the variable itself.  Obviously, every variable that has a trend is correlated with itself 
through time, but that in itself presents no problems.  What creates problems is autocorrelation in 
residuals, not variables.   

3. Detecting serial correlation 

We begin by assuming that we have two variables X and Y, which we have measured n times (Xi and Yi for i=1..n).  
We assume that these measurements have been sorted by time, so that i=1 is the first measurement and i=n is the 
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last.  We will further assume that these measurements are roughly equally spaced in time (this is rarely crucial).  We 
are trying to determine how Y depends on X.  If we assume that the underlying relationship between X and Y is 
linear, then 

 iii ebXaY ++=   (1) 

where a and b are constants, and ei is the ith residual (that is, the difference between Yi and iY� , the predicted value 
at Xi): 

 )bXa(YY�Ye                     ,          bXaY� iiiiiii +−=−=+=  (2) 

If we are trying to detect a trend, then the X variable will be time itself.  Whether X is time, or is some other 
explanatory variable, the same techniques can be used.  If Y is a nonlinear function of X, e.g., 

 )XbXba(YY�Ye             ,          eXbXbaY iiiiiiiiii
2

21
2

21 ++−=−=+++=  (3) 

we will need to use polynomial regression or nonlinear regression.  If Y is a function of several different X variables 
X1, X2, X3, etc. (where the subscripts 1, 2, 3, etc. refer to the different variables, and i refers to the individual 
measurements),  

 ) XbXba(YY�Ye             ,          eXbXbaY i,i,iiiiii,i,i LL +++−=−=++++= 22112211  (4) 

we will need to use multiple regression.  Although the particulars of the regression techniques may vary, the general 
approach to detecting and treating serial correlation remains the same.   

Serial correlation occurs when residuals at adjacent points in time are correlated with one another; that is, when ei 
and ei-1 are, on average, more similar than pairs of residuals chosen randomly from the time series.  Since we are 
concerned with serial correlation in the residuals ei (not in the Yi themselves), testing for serial correlation is 
inherently a diagnostic technique that comes after the model is estimated.  The model must first be fitted (that is, 
values of a and b must be estimated by linear regression, or potentially by some other fitting technique), and the 
residuals ei calculated by (2) above.  The correlation between residuals can be detected in at least three different 
ways: 

3.1. Plotting the residuals against their lags (that is, plotting ei against ei-1) will visually reveal any significant 
correlation that is present.   

3.2. Calculating the correlation coefficient r for the correlation between the residuals and their lags is useful 
because (a) it quantifies how much serial correlation there is, and (b) it permits you to assess the statistical 
significance of whatever correlation you find.  The correlation between the residuals ei and their one-period lags ei-
1 is called the lag-1 autocorrelation, which we will denote by r (be careful not to confuse this with the correlation 
between X and Y, which is also represented by the symbol r).  The lag-one autocorrelation can be calculated most 
easily while you are looking at the plot of ei versus ei-1 (you did look at your residuals, didn't you?); just fit a least-
squares line through the data, and note the value of r.  Remember from the linear regression toolkit that the 
statistical significance of the correlation coefficient r is the same as the statistical significance of the regression 
slope b.  Alternatively, you can calculate r and its standard error sr from the formulas given in the linear regression 
toolkit (just remember that you want the correlation between ei and ei-1, not between X and Y). 

The lag-1 autocorrelation r is an approximation to the true serial correlation ρ, plotted in Figures 3 and 4.  
Unfortunately, r always underestimates ρ.  For time series of 100 points, ρ is about 0.05 larger than r for r<0.5, and 
about 10% larger than r for r>0.5.  This effect decreases as sample size increases. 

If you happen to notice that r  approximately equals the regression slope b, do not be surprised: recall that in linear 
regression, r=bsX/sY, and note that here sX=sY (ei and ei-1 have the same distribution--indeed, they're exactly the 
same numbers, just paired up with their own lags), so r=b.   

The magnitude of r is more important than its statistical significance; if n is large enough, even a trivially small 
amount of serial correlation can be statistically significant.  You can see this by noting that the standard error of r is 
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Since for large n and reasonable α, tα,n-2 is approximately 1.6-2, n's in the hundreds will make small r's statistically 
significant (or you can save yourself the calculations; critical values of r are tallied in Table B.17 of Zar).   

3.3. Estimating the correlation nonparametrically is preferable to calculating r if either (a) the relationship 
between ei and ei-1 is nonlinear, or (b) the residuals are not normally distributed.  In practice, (b) is a more common 
problem.  When the residuals ei are leptokurtic (that is, their distribution has longer tails than normal), parametric 
tests will tend to overstate the statistical significance of r.   

The simplest nonparametric measure of correlation is the Spearman rank correlation coefficient, rs (Zar, section 
18.9).  To calculate rs, simply calculate the correlation coefficient r, but do so on the ranks of each of the ei rather 
than their numerical values.  For small values of n, critical values of r are given in Table B.20 of Zar.  For n>20, the 
statistical significance of rs can be evaluated in exactly the same way as r, that is,  

  21
2

s
s r

nrt 
−
−

=  (6) 

Another nonparametric measure of correlation is Kendall's Tau; it will not be explained here because the calculation 
procedure is somewhat complex and a little tedious.  For the curious, it is detailed in Helsel and Hirsch (1991), 
section 8.2, and in any standard nonparametric statistics text.   

3.4. The Durbin-Watson test for serial correlation (Durbin and Watson, 1951) is the standard method for 
detecting serial correlation.  The Durbin-Watson statistic, d, is calculated as, 
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This value of d is then compared to critical values, given in the appended table, where n is the number of data points 
and k is the number of X variables (for simple linear regression, k=1).  There are two critical values, dL and dU.  
The decision rules are as follows: if d<dL, then reject the null hypothesis (that there is no serial correlation); that is, 
if d<dL, then the serial correlation is statistically significant.  If d>dU, then accept the null hypothesis.  If d is 
between dL and dU, the test is inconclusive.   

The Durbin-Watson test has been explained here because it is commonly used.  However, it offers no practical 
advantages over significance tests with the correlation coefficient r.  Indeed, the Durbin-Watson statistic can be 
shown to be functionally equivalent to 2(1-r) for n>>1.  To see that this is the case, notice that the mean of the 
residuals is zero, so that the sums in d can be re-expressed as variances, then use the formulas from the error-
propagation toolkit to expand the numerator thus: 
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Now, note that if n is large, then (n-1)/n≈1 and Var(ei)=Var(ei-1), so, 
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Because the Durbin-Watson statistic, like r, is parametric, it may yield misleading estimates of statistical 
significance if the residuals are markedly non-normal. 

4. Accounting for serial correlation 

Serial correlation can be treated by several different methods.  If the serial correlation arises because a time-
dependent effect or an explanatory variable has been excluded from the analysis, these should be included as new 
explanatory variables (4.1 through 4.3, below).  Only if the serial correlation cannot be treated as an intelligible 
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signal, should it be treated as random, serially correlated noise (4.4, below).  This illustrates a general principle of 
savvy data analysis: Never treat as unintelligible noise what you could otherwise treat as an intelligible signal. 

4.1. Serial correlation due to long-term trend in Y.  If Y varies with time as well as with X (see 1.1 above), then 
time should be included as an explicit variable in the analysis.  If the time trend is linear, then a simple linear 
regression of Y against X becomes a multiple regression of Y against X and t: 

  iii tbXbaY� 21 ++=  (10) 

If the time trend is nonlinear, then a more complex model may be required. 

4.2. Seasonal or periodic variation in Y.  If the long-term trend in Y has been removed, but there is still a seasonal 
pattern in the residuals (see 1.2 above), then this seasonal variation should be explicitly included in the analysis.  
The most straightforward case (and one that is conveniently rather common) is a roughly sinusoidal cycle in the 
residuals each year.  This can be conveniently modeled by multiple linear regression as,  

  )qcos(b)qsin(btbXbaY� iiiii π+π+++= 22 4321  (11) 

where ti is the time in years, and qi is the non-integer component of ti.  Thus qi runs from 0 to 1 in the course of 
every year.  The values of b3 and b4 jointly determine both the amplitude of the seasonal cycle and its phase (that is, 
at what time of year the peaks and valleys occur). 

4.3 Missing explanatory variables that are serially correlated (see 1.3 above).  For example, stream chemistry 
often varies with streamflow, among other variables.  Because streamflow is serially correlated (after heavy rains, 
streamflow remains high for an extended period), stream chemistry is also often serially correlated.  Explicitly 
including streamflow as an explanatory variable (e.g., X2i=log(flowi)) will eliminate the serial correlation in 
chemistry that is due to streamflow.  Note that this may not completely eliminate the serial correlation in Y, since 
stream chemistry can also be serially correlated for other reasons as well.   

4.4. Serially correlated random noise.  If the serial correlation cannot be explained away, you must account for it 
in your analysis.  There are three basic ways of doing so.  

4.4.1. Subsample your data set.  If the correlation between ei and ei-1 is rlag1, then the correlation between ei and 
ei-2 is (rlag1)2, and the correlation at lag k (i.e., between ei and ei-k) is (rlag1)k.  Thus, by subsampling at wide 
enough intervals, you can make the serial correlation between the residuals as small as you choose in the new, 
subsampled data set.  If your original measurements were taken at uneven intervals, you should subsample at 
roughly even intervals, rather than every kth measurement.  Then repeat your regression analysis on the subsampled 
data set; remember to check whether the new residuals are serially correlated.   

The advantage to the subsampling approach is that it's simple.  The drawback, of course, is that you throw away 
most of your data set!  Helsel and Hirsch argue that since serial correlation makes closely spaced measurements 
largely redundant, throwing many of those measurements away does not destroy much information.  They are right, 
if you are analyzing a simple trend (Y as a function of time), with no other X variables in the problem.  If other 
variables are present, and if they aren't serially correlated and redundant like Y is, then you may be discarding a lot 
of your information about them.   

4.4.2. Average your data over longer periods.  Another approach is to group your data into time periods (months, 
seasons, whatever...) and calculate a mean or median for each period, then conduct your analysis on the average for 
each period rather than on the individual measurements.  Note that if the sampling frequency has changed 
dramatically during your sampling program, the variance of the period averages will change also.  You should either 
prevent this (by averaging over roughly the same number of samples in each period), or correct for it, by using 
weighted least squares (many canned packages can do this--see any good regression text, like Draper and Smith 
(1981) or Neter et al. (1990) for details) where the weights equal the number of measurements in the ith average.   

Unlike the subsampling approach, the averaging approach uses all the data.  Again, however, if there are other X 
variables, and if there is useful information in their variation within periods, averaging will throw this information 
away. 

4.4.3. Compute regression with autocorrelated residuals.  These methods are more theoretically complex than 
simply subsampling or averaging, but they are straightforward to apply, and they don't throw away information like 
the simple methods do.  The theory behind all of these methods is the same, and it goes like this: 
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Linear regression assumes that the "true" underlying linear relationship between X and Y is, 

  iii XY ε+β+α=  (12) 

where α and β are the "true" slope and intercept (corresponding to the parameters a and b that you would estimate 
from any particular data set), and εi are the errors in Y.  We assume that those errors are serially correlated with a 
"true" correlation of ρ (corresponding, again, to the correlation coefficient r that you would estimate from the 
lagged residuals of any particular data set), thus: 

  iii ξ+ρε=ε −1  (13) 

where ξi is random, and not serially correlated.  Note that a fraction ρ of each εi-1 is passed on to the next εi; you 
can think of ρεi-1 as the redundant part of εi, and ξi as the non-redundant part.  Linear regression assumes that the 
errors are uncorrelated, like the ξi, not like the εi, which are serially correlated.  So the question naturally arises: can 
we arrange things so that our residuals are the uncorrelated ξi, which linear regression knows how to handle, rather 
than the serially correlated εi?  Watch this: solve the linear relationship for ε, at both time i and i-1: 

  111 −−− β−α−=εβ−α−=ε iiiiii XY      and      XY  (14) 

Now, substitute both of these ε's into equation (13) above, and rearrange terms: 

 iiiiiiiiii )XX()(YY   or  )XY(XY ξ+ρ−β+ρ−α=ρ−ξ+β−α−ρ=β−α− −−−− 1111 1  (15) 

Note that the serially correlated errors εi have disappeared, and only the well-behaved error ξi remains.  So if we 
transform X and Y into two new variables, X* and Y*, as X*i=Xi-ρXi-1 and Y*i=Yi-ρYi-1, we can rewrite (15) as, 

  iii XY ξ+β+α= ∗∗∗∗  (16) 

Because (16) is not plagued by serial correlation, we can use linear regression to estimate α* and β*, which we can 
translate back to α and β straightforwardly: β=β*, and α=α*/(1-ρ).   

So, now you see the outline of the approach: transform your X and Y variables to X* and Y*, and then regress Y* 
on X*; the regression slope b* will be the best estimate of the true slope β, and a*/(1-ρ) will be the best estimate of 
the intercept.   

So where, you ask, do you get the autocorrelation parameter ρ?  That's precisely the tricky part!  There are three 
approaches that are simple enough to explain here: 

4.4.3.a. Take first differences.  In time-series analysis (see PDQ Statistics, Chapter 8), you typically 
"difference" your variables, such that X*i=Xi-Xi-1 and Y*i=Yi-Yi-1.  This is the same as assuming that ρ=1.  
Those who are familiar with time-series analysis will often suggest applying this same procedure to analyses for 
trends.  There are at least three reasons why this is generally not the right approach: 

 (a) Assuming ρ=1 is guaranteed to overestimate the true ρ, perhaps by a lot.   
 (b) Assuming ρ=1 means that you divide by zero when you calculate a=a*/(1-ρ), making the intercept 

undefined. 
 (c) If X is time, and your measurements are evenly spaced through time, all of the X*i take on exactly the 

same value, making it impossible to do the regression at all! 

Either of the next two methods is generally preferable. 

4.4.3.b. The Cochrane-Orcutt procedure.  Why assume that ρ=1, when you already have a more reasonable 
estimate of ρ, namely the lag-1 autocorrelation r?  That's the idea behind the Cochrane-Orcutt procedure (see Neter 
et al., 1990).  Here's how it works. 

 (a) Regress Y on X, save the residuals, and test them for serial correlation.  If you don't find any, then stop; 
there's no serial correlation to correct for.   

 (b) If you do find serial correlation, calculate the serial correlation coefficient r for the correlation between 
the residuals ei and their lags ei-1.  Then transform the X's and Y's to X*'s and Y*'s, using X*i=Xi-rXi-1 
and Y*i=Yi-rYi-1.  Then regress Y* against X*, yielding the fitted intercept a* and slope b*. 

 (c) Plot the residuals from this regression (of Y* on X*) against their lags, to see whether the serial 
correlation has been eliminated.  If so, then the procedure is finished, yielding b* as the best estimate of 
the true slope, and a*/(1-r) as the best estimate of the intercept.   



Data Analysis Toolkit #11:  Serial correlation  7 

Copyright © 1996, 2001 Prof. James Kirchner 

 (d) If not, update your estimate of r by calculating different residuals, from a* and b*, and the original X's 
and Y's: 

       Xb
r

aY iii
∗

∗

−
−

−=ε
1

 (17) 

   and calculating the lag-1 autocorrelation r  of these residuals with their lags.  Then, using 
this r, iterate back through step (b), calculating new X*'s and Y*'s from your new r and your original X's 
and Y's.   

  The Cochrane-Orcutt procedure should terminate in one or two iterations (and if it doesn't, you might go 
slightly daft shuffling your e's and r's).  If it fails to converge, or it converges too slowly, you need the 
Hildreth-Lu procedure (see below).   
 

4.4.3.c. The Hildreth-Lu procedure.  The Hildreth-Lu procedure (see Neter et al., 1990) arises from the 
observation that you can rewrite equation (15) such that Yi is a function of Yi-1, Xi, and Xi-1: 

  iiiii )XX()(YY ξ+ρ−β+ρ−α+ρ= −− 11 1  (18) 

The Hildreth-Lu procedure simply turns ρ into a parameter that is fitted to the data, just like α and β are.  The 
advantage of Hildreth-Lu is that it estimates ρ, α, and β directly, and it does so all at once.  There is only one 
drawback: equation (18) is nonlinear in the parameters, so it can't be solved by multiple linear regression.  Instead, 
it must be fitted using a nonlinear regression algorithm (such as the "Nonlinear Fit" platform in JMP).  Using such 
an algorithm, you search for the combination of r, a, and b that gives the best match between the Yi and the 
predicted values iY� : 

  iiii bXa)XbaY(rY� ++−−= −− 111  (19) 

Equation (19) can be readily rewritten for multiple X variables (X1,i , X2,i , etc.) as follows: 

  LL ++++−−−−= −−− i,i,i,i,ii XbXba)XbXbaY(rY� 22111221111  (20) 

One difficulty with the Hildreth-Lu procedure is that nonlinear fitting algorithms may not calculate standard errors 
for a, r, and the b's, and even if they do, they may not do so reliably.  JMP's Nonlinear Fit platform does give 
standard errors, and I have never found them to be inaccurate, but in the world of nonlinear parameter estimation, 
there are few bombproof mathematical guarantees (in marked contrast to linear estimation).  If your algorithm does 
not estimate standard errors, or if you don't trust its estimates, you can always check them with step (b) of the 
Cochrane-Orcutt procedure: using the value of r estimated by Hildreth-Lu, transform X  to X* and Y to Y*, then 
regress Y* on X* to get estimates of a* and b* (which, since they come from linear regression, will be accompanied 
by standard errors).  These estimates of a* and b* should be consistent with your Hildreth-Lu estimates of a and b, 
once you remember that you need a factor of 1-r to transform from a* (or its standard error) back to a (or its 
standard error).   

4.4.4. Adjust your uncertainty estimates to account for the loss of degrees of freedom.  Serial correlation leads 
to underestimates of uncertainty (and thus overestimates of statistical significance) because when residuals are not 
independent, the effective number of degrees of freedom can be much smaller than the sample size would indicate.  
In principle, one should be able to account for this loss of degrees of freedom by calculating the "effective" sample 
size--that is, the number of independent measurements would be functionally equivalent to your set of non-
independent measurements.  You then use this "effective" sample size, neff, in place of n in calculating standard 
errors and performing significance tests.  A commonly used method for estimating neff comes from Mitchell et al. 
(Climatic change, WMO Technical Note 79, 1966):  

  
ρ
ρ

+
−

=
1
1nneff  (21) 

The drawback to this approach is that it is based on the true autocorrelation coefficient ρ, and in practice one only 
has the sample autocorrelation coefficent r, which underestimates ρ and therefore leads to overestimates of neff.  
Nychka et al. (Confidence intervals for trend estimates with autocorrelated observations, unpublished manuscript, 
2000) have proposed that this problem can be addressed by adding a correction factor to (21) as follows: 

  
nr
nrnneff /68.01

/68.01
++
−−

=  (22) 
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Nychka et al.'s Monte Carlo simulations show that this gives reasonably accurate and unbiased uncertainty estimates 
for trend analyses.  They also note that when  neff<6, estimates of uncertainties and confidence intervals are likely to 
be unreliable even if equation (22) is used. 
 

Important note:  The procedures of section 4.4 are reliable only if two conditions hold: 

(1) The residuals ei must depend only on the previous residuals ei-1, plus random noise (so-called "first-order 
autoregressive errors").  More complicated forms of serial correlation can occur (such as where the ei are 
positively correlated with the ei-1, and negatively correlated with the ei-2--just one of the many 
possibilities), but they are too complex, and numerous, to discuss here. 

(2) You must correctly intuit the form of the "real" equation relating X and Y.  In Figure 2, for example, you 
could either fit a straight line (in which case the residuals would be large, and would show very strong 
serial correlation), or you could fit a sine curve (in which case the residuals would be smaller, and less 
strongly correlated).  In this case the first approach would be correct, but we only know this because we 
know the function that generated the data; it would be almost impossible to tell simply by looking at the 
plot.  The lesson from this is sobering: serial correlation can create visually coherent patterns that are 
nonetheless completely spurious.  That is why, if there is evidence of serial correlation, you should be 
suspicious of complicated patterns of behavior, like the abrupt reversal in Figure 1 or the oscillation in 
Figure 2, unless you have strong theoretical reasons to expect such behavior--even if the data look 
visually convincing. 

A note to close section 4:  In many situations you will have the option of treating serial correlation several different 
ways: causally (e.g., Y varies seasonally because it depends on streamflow, which varies seasonally, as in (4.3) 
above), phenomenologically (e.g., Y varies with a seasonal cycle that can be fitted with a sine wave as in (4.2) 
above), or statistically (e.g., Y varies as serially correlated noise, as in (4.4) above, without an obvious pattern that 
can be fitted).  The order of preferences is clear: treat serial correlation causally if you can (as in (4.3) above), or 
otherwise phenomenologically (as in (4.1) or (4.2) above).  Treating serial correlation as statistical noise (as in 
(4.4)) is a last resort, to be invoked only if none of the other approaches is viable (if, for example, the missing causal 
variable can't be obtained, and the variation in Y doesn't fit any simple phenomenological description). 

Two final notes: 

Environmental data can also be spatially autocorrelated, such that measurements at nearby locations have correlated 
residuals.  Spatial autocorrelation can distort trends across space, just as temporal autocorrelation can distort trends 
through time.  In more than one dimension, things become mathematically more complex; problems with spatially 
autocorrelated data are addressed in the field of geostatistics . 

A common misconception is that nonparametric techniques take care of serial correlation.  This is not correct.  
Nonparametric techniques are robust against outliers, but they are not robust against serial correlation.  However, 
there are nonparametric techniques that are specifically designed to deal with particular kinds of serial correlation.   
One example is the Seasonal Kendall Test, a nonparametric test that accounts for seasonal effects (but not other 
sources of autocorrelation). 
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