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General statement of the problem

If some quantity of interest z is calculated from other quantities x, y, q, w, etc.,

),w,q,y,x(fz L=

what is the uncertainty in z, and how is it related to the uncertainties in x, y, q, w, etc?  In other words,
given the function f above, what is the corresponding function g

),s,s,s,s(gs wqyxz L=

that permits us to compute the uncertainty in z from the uncertainties in its component parts?  Note that
we could estimate the uncertainty in the average value of z (the standard error) from the standard errors of
the component means (as in the formula above).  We could also calculate the uncertainty (or variability) in
individual estimates of z (the standard deviation) using the same function g, but in this case the inputs are
the standard deviations of the input variables x, y, q, and w, rather than the standard errors of their
means:

),s,s,s,s(gs wqyxz L=

Sources of uncertainty

1. statistical error/random variation of replicate measurements
2. spatial and temporal variability
3. systematic error (bias)
4. imprecise definitions or unrepresentativeness of samples
5. uncertainty in the form of the function relating z to x, y, q, w, etc.

This toolkit explains methods for quantifying uncertainty that arises from random measurement error
and from spatial or temporal variability (where one wants to average over that variability).  Uncertainty
arising from sources (3)-(5) is not adequately addressed by these methods (or by any other general techniques
either).

Ways to express uncertainty or variability

Variance

Advantages: -easy to manipulate mathematically (see below)
Disadvantages: -measured in units of x squared, thus cannot be compared directly to values of x.
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Standard deviation and standard error

Advantages: -intelligible directly in units of x
Disadvantages: -harder than variance to manipulate mathematically
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The term standard deviation is usually reserved for expressing the spread of values of individual
observations xi of a variable x.  The term standard error is most often used to express the uncertainty in the
mean of x, but it is also more generally applied to express the uncertainty associated with any form of a
central estimate.  Thus one can speak of the standard error of a quantity q, whether or not q is the mean of
a set of measurements.  The standard error is denoted by several different symbols, including xs , xσ ,
SE(x), and s.e.(x).

Confidence intervals (for mean of x) and prediction intervals (for individual values of x)

Advantages: -associates an explicit degree of confidence with a specified interval of variability.
Disadvantages: -more difficult to 'propagate' through a calculation than standard error is.

Probability distribution p(x)

Advantages: -conveys much more information about variability in x (skew, shape of distribution,
characteristics of tails, etc.) than a single parameter of spread, such as variance or
standard deviation or standard error.

Disadvantages: -without huge numbers of measurements, or without good a priori reasons to believe
that p(x) conforms to one of the well-known distributions (normal, Poisson, beta,
gamma, etc.), accurately estimating the shape of p(x) is difficult (the tails are
particularly unstable).

How to report uncertainty or variability

Most commonly, quantities are reported as the mean (or central estimate), plus-or-minus the standard
error, like this: q=1.23±0.45.  That means the central estimate of q is 1.23, and the standard error of the
estimate is 0.45.  You should generally use this convention for reporting results in this course.  The central
estimate of q may be a mean of sample measurements, or it may be derived in other ways.  Sometimes the
standard error is given in parentheses, e.g. 1.23(0.45).

Warning: quantities are sometimes reported as means±standard deviations or ±confidence intervals rather
than standard errors.  Where the number of measurements is known, one can convert from standard
deviations to standard errors (and back again) by scaling by n .  Sometimes the number of
measurements is reported in parentheses, e.g. q=1.23±1.10 (6).  There are many diverse conventions; to
prevent confusion, you should always make clear what your measure of variability is, e.g.: "the average
concentration was 1.23±0.46 ppbwt (mean±standard error)".
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Important preliminary notes

1: The formulas in this toolkit will be given in terms of the sample standard error xs ,
rather than the population standard error xσ , because uncertainty is commonly
estimated from the standard deviations of samples, rather than from a priori
knowledge of the population standard deviation.  The formulas are identical in
either case; merely substitute the greek symbols for the equivalent formulas in
terms of µ and σ.

2: The "uncertainty in z" can refer to two different, but related, things: the variability of
individual measurements of z (usually termed a standard deviation), and the
uncertainty in a central estimate of z (usually termed a standard error).  Likewise
the variable z can be used to refer to an individual measurement, or to the central
value for which the sample mean is an approximation.  The formulas below will work
fine in either case, as long as you don't mix them up: you can apply them to the
variability in individual measurements ( xs ), or to the uncertainty in central
estimates ( xs ), but you can't mix both kinds of uncertainties in the same equation.
Whether you are propagating the uncertainty in individual values of z, or the
uncertainty in the central estimate of z, the equations are exactly the same, but the
numerical values you use for sx will be different (smaller, by n1  when x
represents the mean of n independent measurements).

3: None of the calculations below assume that variables are normally distributed.  You
can always use zs  as an estimate of the uncertainty in z, and the equations below
will be equally accurate in estimating zs  , whether or not z is normally distributed.
Of course, if z is normal, the zs   will be a complete description of the uncertainty in
z, whereas if z is not normal, zs   will be be equally accurate, but you will also need
to know the particular shape of the distribution in order to describe the variability
in z.

4: At the risk of stating the obvious: the symbol z used here is not the "Z statistic" (a.k.a.
the standard normal deviate).  It is simply some variable that is a function of other
variables x, y, q, etc.

5. Only use the "simple rules" given below for the simple functions to which they apply.
For example, don't use the Simple Rule for Products and Ratios for a power
function (such as z=x2), since the two x's in the formula would be correlated with
each other.  When in doubt, use the method of moments (which incorporates these
simple rules as a special case).

Simple rule for sums and differences

if z=x±y±q±w±...
and x, y, q, w, etc. are uncorrelated with one another
then the variance of the sum or difference is the sum of the variances:

L++++= )w(Var)q(Var)y(Var)x(Var)z(Var

or, equivalently, the standard errors add in quadrature (that is, squared, added, and
then square rooted).

( ) ( ) ( ) ( ) L++++= 2222
wqyxz sssss
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Important note: The uncertainty in each variable increases the uncertainty in z, whether the variable
was added or subtracted in calculating z.  As more variables are included in z, z
may either grow or shrink (depending on whether the new variables add or
subtract), but the uncertainty in z always increases.

Important note 2: Therefore beware the small difference between two or more large numbers.  The
percentage uncertainty in z =x-y can be very large, even if the percentage
uncertainties in x and y are very small.

Simple rule for weighted sums and differences

if z=ax±by±cq±dw±...
and a, b, c, d, etc. are constants (with no uncertainty)
and x, y, q, w, etc. are uncorrelated with one another
then the variance of the weighted sum or difference is the weighted sum of the variances:

L++++= )w(Vard)q(Varc)y(Varb)x(Vara)z(Var 2222

or, equivalently, the standard errors add as a weighted sum in quadrature (that is,
squared, weighted, added, and then square rooted).

( ) ( ) ( ) ( ) L+⋅+⋅+⋅+⋅= 2222
wqyxz sdscsbsas

Important note: the uncertainty in each variable increases the uncertainty in z, whether the variable was
added or subtracted to make z.

Simple rule for products and ratios

if z=x times/divided by y  times/divided by q  times/divided by w  times/divided by ...
and x, y, q, w, etc. are uncorrelated with one another
then the percent (or fraction) standard error of z can be found by adding the percent (or

fraction) standard error in each of its components, in quadrature:
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Gaussian error propagation

if ),w,q,y,x(fz L= , where f can be a nonlinear function,
and x, y, q, w, etc. are uncorrelated with one another
then the standard error of z can be approximated by the Gaussian error propagation rule:
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where z∂ / x∂ , etc. are the partial derivatives of z with respect to its component
variables.  The Gaussian error propagation rule is a special case of the more
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complete method of moments, detailed below; in turn, the "simple rules" outlined
above are all special cases of Gaussian error propagation.

Method of moments

Advantages: -more general than the simple rules given above
-computationally simpler than exact analytic methods and Monte Carlo methods

Disadvantages: -less accurate than exact methods and Monte Carlo methods, particularly for functions
with substantial nonlinearities within the range of uncertainty in the inputs

The method of moments is a very general technique for estimating the moments of z--its first moment
(mean), its second moment (variance or standard deviation), its third moment (skewness)--based on
various approximations to the function f.  The most commonly used form, called first-order second-moment
uncertainty analysis, estimates the second moment of z (its spread), based on a first-order approximation to f
(that is, approximating the function f by a flat plane tangent to the curved surface of f at the mean x, y,
etc.).  Higher-order approximations are possible--Ang and Tang (reference below) give an example--but
they are rarely used because (a) they are much more complex to calculate, and (b) they require higher
moments (skewness, kurtosis, etc.) of the input variables, which are difficult to estimate reliably unless
sample sizes are large.  The mathematical derivations underlying first-order, second-moment uncertainty
analysis are given in an appendix to this toolkit.

Simplest case: single-variable function z=f(x)
Approximate f by the tangent line (which has a slope of dz/dx ) at the mean of x.  Then

the standard error of z is approximately

xz s
dx

dz
s ≈

Note that the uncertainty in z depends on two things: how uncertain x is (that is, xs ),
and how sensitive z is to x (that is, dz/dx ).  See diagram below:

z
 =

 f
(x

)

x

z=f(x)

local slope=sensitivity of z to x

uncertainty
in z

uncer-
tainty
in x

Function of two variables z=f(x,y)
Approximate f by the tangent plane whose slope in the x and y dimensions is

described by the partial derivatives z∂ / x∂ and z∂ / y∂  (again, these are evaluated
at the mean x and mean y).  The variance of z is,
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where Cov(x,y) is the covariance of x and y, defined as:

yxxyxy ssrs)y,x(Cov == 2

where rxy is the correlation coefficient of the relationship between x and y.  The
covariance of x and y is positive if they tend to vary together (that is, if x is usually
high when y is high, and vice versa).  The covariance is negative if they vary in
opposite directions, and it is zero if they are uncorrelated with one another.  [Note
that because the correlation of any variable with itself is perfect (r=1), the
covariance of any variable with itself is simply its variance:
Cov(x,x)=rxx sx sx = sx2 = Var(x)].  From the formula above, one can see directly
that the standard error of z is:
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Note: The uncertainty in z will depend on three things: (1) how much z changes for a given
change in x and y ( z∂ / x∂ and z∂ / y∂ ), (2) how uncertain x and y are ( xs and ys ),
and (3) how closely x and y are correlated (rxy).

Note: If x and y are uncorrelated, the third term vanishes and the formula becomes Gaussian
error propagation (which in turn is analogous to the simple rule for weighted
sums, where the weighting constants are the partial derivatives).

Note: Correlations between x and y can either raise or lower the uncertainty in z, depending
on whether the product rxy z∂ / x∂ z∂ / y∂ is positive or negative.  If x and y are
positively correlated and have similar effects on z (i.e., z∂ / x∂ and z∂ / y∂  have
the same sign), or if they are negatively correlated and have offsetting effects on z
( z∂ / x∂ and z∂ / y∂  have opposite sign), then the overall uncertainty in z will be
greater than if they were not correlated.  Conversely, if x and y are negatively
correlated and have similar effects on z or are positively correlated but have
offsetting effects on z , their uncertainties will tend to cancel one another out,
resulting in a lower overall uncertainty in z than if x and y were uncorrelated.

Note: What do we mean by correlations here?  We mean correlations in the uncertainties in the
variables.  These can arise from two different sources.

First, the measurement errors may be correlated even if the underlying true values
are not.  For example, evaporation from a water sample will increase the
concentrations of all the solutes (and thus create a correlation in the measured
concentrations), even if the concentrations in the stream are not correlated.

Second, when the underlying values are correlated across a population, then the
uncertainties in the group averages will be correlated, even if the uncertainties in the
individual values are not.  For example, heart attack risk is a function of height,
weight, and cholesterol levels.  Height and weight are correlated among
individuals, as are weight and cholesterol levels.  Thus the uncertainties in the
average height, weight, and cholesterol levels of a group of people will be correlated
because of sampling error.  That is, if the mean weight of the sampled group is
greater than the true mean for the population, the mean heights and cholesterol
levels will also probably be higher than the true means, and the correlation would
need to be taken into account in assessing uncertainty in the average heart attack
risk for a group.   Thus error propagations for uncertainties in group averages need



Data Analysis Toolkit #5:  Uncertainty Analysis and Error Propagation Page 7

Copyright © 1995, 2001 Prof. James Kirchner

to account for both kinds of correlations.  Fortunately, a scatterplot of the
individual measured values will show the combined effects of both correlations.

But if we are trying to estimate the uncertainty in the heart attack risk for a single
individual, then only the first kind of correlation matters.  An individual's height,
weight, and cholesterol are correlated with one another, but the uncertainties are
not.  Since these measurements are made independently, the measurement errors
per se are uncorrelated.

Function of many variables z=f(x1, x2, x3...)

Caution: different notation.  Here x1, x2, x3...xm to refer to m  different variables (e.g., x2=y, x3=q, etc.) rather
than different measurements of a single variable.

Approximate f by the tangent m-dimensional plane whose slope in each of the j=1..m
dimensions is described by the partial derivatives z∂ / jx∂ , evaluated at the mean
xj's.  The standard error of z is a direct extension of the two-variable case
considered above:
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As above, the uncertainty in z will depend on the uncertainty in each of the xj, the
sensitivity of z to changes in the xj, and the interrelationships among each pair of
xj.

Where the x variables are uncorrelated with one another, this reduces to the familiar Gaussian error
propagation formula:
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Exact analytic methods

Advantages: -permit direct calculation of the full probability distribution, not just one or two
moments

Disadvantages: -often analytically intractable

If z=f(x), then the probability that x lies within an interval of width dx must equal the
probability that z lies within the corresponding interval dz, such that,

dxxpdzzp )()( =       or  

dx

dz

xp

dz

dx
xpzp
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thus if the probability density function p(x) is known, the corresponding p(z) can be
derived directly.  When z is a function of more than one variable, p(z) depends on
the joint probability distribution of all the input variables.  See Ang and Tang (and
references therein) for this and other complicated examples.



Data Analysis Toolkit #5:  Uncertainty Analysis and Error Propagation Page 8

Copyright © 1995, 2001 Prof. James Kirchner

Monte Carlo methods

Advantages: -permit direct computation of uncertainty even when the function f is ill behaved (e.g.,
contains discontinuities or extreme nonlinearities) and when the input variables
may not be readily described by the usual moments (e.g., a binary variable that has
only values of 0 and 1, and therefore lacks a central tendency)

Disadvantages: -time-consuming to program
-difficult to infer role of each variable in contributing to total uncertainty
-difficult to document and explain to others

Monte Carlo methods are computer-based techniques for brute force numerical simulation of probabilistic
processses, and can be summarized in the following steps.

1: Generate a large number of sets of random numbers that have statistical properties
similar to those of the real-world variables x, y, q, w, etc.  Relevant properties of
these random numbers include: central tendency, spread, shape of distribution,
and (importantly) correlation between variables.  Algorithms for generating
random variables from many different distributions are given in Numerical Recipes
(reference below).  Morgan and Henrion (section 8.5.7) describe approaches to
generating correlated random variables.

1a: If there are actual measurements describing x, y, etc., one can randomly pick among
the measured values, as an approximation to the (usually unknown) distributions
underlying the particular values that were measured.  Monte Carlo exercises that
use measurements in this way are often called "bootstrap" or "resampling"
methods.

2: From each set of values for the input variables x, y, q, w, etc., calculate the
corresponding value of ),w,q,y,x(fz L= .

3: Examine the distribution of the simulated values of z, to determine the moments and
any other features of interest (e.g., range of outlying values).  The contribution of
each variable to the total uncertainty in z can be estimated from the correlation
between that variable and z.

4: Repeat steps 1-3 several times to test whether the conclusions that were drawn are
sensitive to the particular random values that have been generated.  If so, increase
the number of random input sets generated in step 1.  Morgan and Henrion
(Chapter 8) use statistical sampling theory to estimate how many Monte Carlo
samples should be sufficient to achieve the desired level of precision.

References: Morgan, M. G. and M. Henrion, Uncertainty: a guide to dealing with uncertainty in
quantitative risk and policy analysis, 332 pp., Cambridge University Press, 1990
(Chapter 8).

Taylor, J. R., An Introduction to Error Analysis, 270 pp., University Science Books, 1982.
Bevington, P. R., Data Reduction and Error Analysis for the Physical Sciences, 336 pp.,

McGraw-Hill, 1969 (Chapters 4 and 5).
Ang, A. H.-S. and W. H. Tang, Probability Concepts in Engineering Planning and Design,

409 pp., John Wiley and Sons, 1975 (Chapter 4).
Press, W. H., B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerical Recipes:

the Art of Scientific Computing, 818 pp., Cambridge University Press, 1986.
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First-order, second-moment error propagation 
(propagation of standard errors using linear approximations) 

One-dimensional case 

The value of a function z=f(x) can be extrapolated from its value at a point zo=f(xo), using 
successively more elaborate approximations (Taylor series): 
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where all of the derivatives of z  are evaluated at x=xo.  We can make a first-order 
approximation to z by using just the linear terms, which approximates the curved function 
f(x) by its tangent line at the point xo: 
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Now, let xo be the mean value of x, so that: 
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and (because we have approximated f by a linear function),  
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So that (3) becomes: 
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or, equivalently, 
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Now, our goal is to express the uncertainty of z in terms of uncertainty in x.  Taking the 
definition of variance as:  
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we substitute (6), noting that since dz/dx is the derivative evaluated at the mean of x, it is a 
constant and thus it can be brought outside the summation:  

( ) ( ) ( )
)(

111
)(

2
2

22

2
xVar

dx
dz

n

xx
dx
dz

n

xx
dx
dz

n
zzzVar ⎟

⎠
⎞

⎜
⎝
⎛=

−

−⎟
⎠
⎞

⎜
⎝
⎛

=
−

⎟
⎠
⎞

⎜
⎝
⎛ −

≈
−
−

=
∑∑

∑  (7) 

Thus all three of the following are equally valid approximations: 
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These are approximations, rather than equalities, because they ignore any curvature in the 
function f .  One can make the approximation to f more exact by adding extra terms of the 
series in (1); however, doing so makes the uncertainty in z dependent not only on the 
variance of x, but on higher moments of x as well (such as skewness and kurtosis, for 
quadratic approximations to f).  This is rarely done in practice, because (a) the calculations 
become complex and tedious, and (b) the higher moments are often not robust; therefore 
their values are unstable. 

Two-dimensional case 

If z is a function of two variables, z=f(x,y), this function can be approximated by 
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Again, our task is to express the uncertainty in z, in terms of the uncertainty in x and y.  As 
above, our approach will be to approximate z by its first-order Taylor series (linear 
approximation), and then calculate the variance of this approximation to z.  Because the 
approximation is linear, 

 )y,x(fz ≈  (10) 

such that the linear terms of (9) become, 
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Thus the variance of z can be approximated as, 
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Expand the squared quantity (in square brackets): 
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Now carry the summation inside the individual terms, noting that since ∂z/∂x and ∂z/∂y are 
evaluated at the mean x and y, they are constant and can be brought outside the 
summations: 
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Note further that 
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Where Cov(x,y) is the covariance of x and y.  Substitute (15) into (14), obtaining directly: 
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which can be rewritten as: 
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Multi-dimensional case 

Note: here x1, x2, x3..xm denote different variables, not different values of a single variable 
"x".  The linear approximation to a function of many x variables is, by extension of (11): 
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(the higher-order terms of the Taylor series will not be shown this time).  We can calculate 
the variance of z  from (18) directly as follows, remembering that when the summation in 
(18) is squared, all possible cross-products must be taken: 
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where the outermost Σ indicates summation over the individual values of the vector of x 
variables (which, again, are not shown explicitly subscripted).  As in the previous cases, we 
now bring this summation inside the partial derivatives, which we can do because the 
derivatives are evaluated at a single point (the mean of all the x variables), and are therefore 
constant.  The result is: 
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There will be a total of m terms for which i=j, and thus Cov(xi,xj)=Cov(xi,xi)=Var(xi).  The 
covariance of any variable with itself is simply its variance, as can be seen by writing the 
covariance in terms of the correlation coefficient r, 

 
jiji xxxxji ssr)x,x(Cov =  (21) 

and noting that the correlation of any variable with itself is 1.  It is often helpful to separate 
the variance terms in (20), yielding: 
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Note further that the remaining covariance terms come in pairs, e.g. Cov(x1,x2)=Cov(x2,x1).  
It is efficient to rewrite the sum of covariance terms so that all such pairs are only calculated 
once, i.e. for i>j, yielding: 
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This can be rewritten in terms of the standard deviation or standard error of z,  
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The Gaussian error propagation rule  follows directly from (24) in the special case that all of the 
xj are uncorrelated with one another: 
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