

Climatologies at High resolution for the Earth Land Surface Areas

CHELSA V2.1: Technical specification

Release Date: 24. 05. 2021

Document version: 1.2

Dirk Nikolaus Karger & Niklaus E. Zimmermann

Swiss Federal Research Institute WSL Zürcherstrasse 111 CH-8903 Birmendorf Switzerland

CHELSA: File Specification

Document maintained by Dirk Nikolaus Karger (WSL, dirk.karger@wsl.ch)

CHELSA V.2.x data should be cited as:

Scientific publication:

Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P. & Kessler, M. (2017) Climatologies at high resolution for the earth's land surface areas. *Scientific Data* 4, 170122. https://doi.org/10.1038/sdata.2017.122

Data citation:

Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W., Zimmermann, N.E., Linder, H.P. & Kessler, M. (2021) Climatologies at high resolution for the earth's land surface areas. *EnviDat.* https://doi.org/ 10.16904/envidat.228.v2.1

Revision history

Version Date		Changes
1.0	21.05.2021	Initial document
1.1	02.06.2021	Updated: Variable names
1.2	10.09.2021	Updated: Scale and offset

Table of Contents

1.	Introduction	5
2.	CMIP6 ISIMIP3b	6
	2.1 ISIMIP3b BA	6
3.	Format and File Organization	7
	3.1 Dimensions	8
	3.2 Variables	8
4.	Grid Structure	9
5.	File Naming Conventions	10
6.	Changes between version 1 and 2	11
7.	Variable Names	11
,	7.1. Climatologies	11
,	7.2. Monthly	15

1. Introduction

High-resolution information on climatic conditions is essential to many applications in environmental and ecological sciences. The CHELSA (Climatologies at high resolution for the earth's land surface areas) data (Karger et al. 2017) consists of downscaled model output temperature and precipitation estimates at a horizontal resolution of 30 arc sec. The temperature algorithm is mainly based on statistical downscaling of atmospheric temperatures. The precipitation algorithm incorporates orographic predictors including wind fields, valley exposition, and boundary layer height, with a subsequent bias correction. The resulting data consist of a monthly temperature and precipitation data and various derived parameters.

As the CHELSA project is continuously expanded, certain new parameters, time scales etc. are not included anymore in the original publication (Karger et al. 2017). We are therefore provide this document as a guideline of the current climatic parameters available and will expand it as new parameters or time periods will become available. Please refer to the version history for changes made in the document.

Some of the parameter descriptions are different from those of the original publication (Karger et al. 2017), as we tried to keep as much of them consistent with CF naming conventions. Not all parameters however have a respective CF name.

2. CMIP6 ISIMIP3b

2.1 ISIMIP3b BA

CHELSA V2 is currently only available for a selected number of CMIP6 scenarios. Since the number of models and rcps has increased a lot from CMIP5 to CMIP6, we do not provide a full list of all possible GCM and SSP combinations at 1km resolution anymore. We rather opted for an approach of preselecting GCMs and SSP. The selection follows the models given for the Intersectoral Impact Model Intercomparion Project (ISIMIP). Before downscaling to 1km the models have been bias corrected using a trend-preserving bias correction following (Lange 2019). GCM selection follow that of ISIMIP3b documented here: https://www.isimip.org/documents/413/ISIMIP3b_bias_adjustment_fact_sheet_gWHNhgH.p df

The priority of the model is given following ISIMIP3b. If less than five models are used, GCMs selection should follow the priority with priority=1 equals highest priority, and priority=5 equals lowest priority.

Some of the models show spatial interpolation artefacts from the statistical downscaling employed in ISIMIP3b_BA. These artefacts are an effect of the statistical downscaling in ISIMIP3b_BA, not from CHELSA, and therefore we cannot remove them.

For a total selection of all possible GCM and scenario combinations for various timeperiods, we provide the chelsa_cmip6 python package available here: https://gitlabext.wsl.ch/karger/chelsa_cmip6

Scenario specifier	Description
ssp126	SSP1-RCP2.6 climate as simulated by the GCMs.
ssp370	SSP3-RCP7 climate as simulated by the GCMs.
ssp585	SSP5-RCP8.5 climate as simulated by the GCMs.

 Table 3.1 Climate Scenario Specifiers

Table 3.2. Climate forcing data and source for the CHELSA CMIP6 ISIMIP3 data. The priority of models follows the suggestions of the ISIMIP3b protocol.

title	model	institution	native resolution	ensemble member	priority
<u>GFDL-</u> <u>ESM4</u>	gfdl- esm4	National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA	288x180	rli1p1f1	1
<u>UKESM1-</u> <u>0-LL</u>	ukesm1- 0-ll	Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, EX1 3PB, UK	192x144	r1i1p1f2	2
<u>MPI-</u> <u>ESM1-2-</u> <u>HR</u>	mpi- esm1-2- hr	Max Planck Institute for Meteorology, Hamburg 20146, Germany	384x192	rli1p1f1	3
IPSL- CM6A-LR	ipsl- cm6a-lr	Institut Pierre Simon Laplace, Paris 75252, France	144x143	rli1p1f1	4
MRI- ESM2-0	mri- esm2-0	Meteorological Research Institute, Tsukuba, Ibaraki 305-0052, Japan	320x160	r1i1p1f1	5

3. Format and File Organization

All files are provided as georeferenced tiff files (GeoTIFF). GeoTIFF is a public domain metadata standard which allows georeferencing information to be embedded within a TIFF file. Additional information included in the file are: map projection, coordinate systems, ellipsoids, datums, and fill values.

All GeoTIFF files are saved as integer with a compression = deflate, predictor = 2, and an internal scale and offset in case of continuous variables. GDAL 2.2 or higher is required to read the offset and scale correctly. Certain programs, especially older versions, might not be able to automatically set the scale and offset correctly. In that case it has to be applied manually.

GeoTIFF can be viewed using standard GIS software such as:

SAGA GIS - (free) http://www.saga-gis.org/

ArcGIS - https://www.arcgis.com/

QGIS - (free) www.qgis.org

DIVA - GIS - (free) http://www.diva-gis.org/

GRASS - GIS - (free) https://grass.osgeo.org/

3.1 Dimensions

All CHELSA files contain a variable that define the dimensions of longitude and latitude. The time variable is usually encoded in the filename.

Name	Description	type	Attribute
longitude	Longitude	double	degrees_east
latitude	Latitude	double	degrees_north
variable	variable	int	variable

Table 3.1. Dimension Variables

3.2 Variables

All variables of CHELSA are time-averaged and contain either daily, monthly, or annual means, but not mixtures of these. Instantaneous parameters are not provided. Monthly time-averaged files usually based on means of synoptic hours. Monthly files represent averages for the calendar months, accounting for leap years. For monthly means, each file contains a single month. For annual means or accumulations, files contain a single year. For climatological values, a file contains the means of a given period (e.g. 1981-2010).

4. Grid Structure

All global CHELSA products are in a geographic coordinate system referenced to the WGS 84 horizontal datum, with the horizontal coordinates expressed in decimal degrees. The CHELSA layer extents (minimum and maximum latitude and longitude) are a result of the coordinate system inherited from the 1-arc-second GMTED2010 data which itself inherited the grid extent from the 1-arc-second SRTM data.

Grid ex	xtent:
---------	--------

Attribute	value
Resolution	0.0083333333
West extent (minimum X-	-180.0001388888
coordinate, longitude):	
South extent (minimum	-90.0001388888
Y-coordinate, latitude)	
East extent (maximum X-	179.9998611111
coordinate, longitude)	
North extent (maximum	83.9998611111
Y-coordinate, latitude)	
Rows	20,800
Columns	43,200

Note that because of the pixel center referencing of the input GMTED2010 data the full extent of each CHELSA grid as defined by the outside edges of the pixels differs from an integer value of latitude or longitude by 0.000138888888 degree (or 1/2 arc-second). Users of products based on the legacy GTOPO30 product should note that the coordinate referencing of CHELSA (and GMTED2010) and GTOPO30 are not the same. In GTOPO30, the integer lines of latitude and longitude fall directly on the edges of a 30-arc-second pixel. Thus, when overlaying CHELSA with products based on GTOPO30 a slight shift of 1/2 arc-second will be observed between the edges of corresponding 30-arc-second pixels.

5. File Naming Conventions

The filename of each CHELSA data product follows a similar structure including the respective model used, the variable short name, the respective time variables, and the accumulation (or mean) period in the following basic format:

CHELSA_[short_name]_[timeperiod]_[Version].tif

For CMIP6 data:

CHELSA_[short_name]_[timeperiod]_[model] _[ssp] _[Version].tif

6. Changes between version 1 and 2

- Shift from ERA-Interim to ERA5 as forcing data.
- Version 2 uses a temperature lapse rate based on the 950 and 850 hPa pressure level from the ERA5 reanalysis atmospheric temperature instead of estimating the temperature lapse rate through the entire atmosphere.
- Version 2 uses an improved bias correction for precipitation that wraps around the dateline. Precipitation is also bias corrected for systematic gauge undercatch using (Beck et al. 2020).
- All variables are saved as integers with a given offset and scale embedded in the geotiff file to arrive at e.g. Celsius or kg m^-2 (mm) (only for climatologies).

7. Variable Names

7.1. Climatolog	gies
-----------------	------

shortname	longname	unit	scale	offset	explanation
bio1	mean annual air temperature	°C	0.1	-273.15	mean annual daily mean air temperatures averaged over 1 year
bio2	mean diurnal air temperature range	°C	0.1	0	mean diurnal range of temperatures averaged over 1 year
bio3	isothermality	°C	0.1	0	ratio of diurnal variation to annual variation in temperatures
bio4	temperature seasonality	°C	0.1	0	standard deviation of the monthly mean temperatures
bio5	mean daily maximum air temperature of the warmest month	°C	0.1	-273.15	The highest temperature of any monthly daily mean maximum temperature
bio6	mean daily minimum air temperature of the coldest month	°C	0.1	-273.15	The lowest temperature of any monthly daily mean maximum temperature
bio7	annual range of air temperature	°C	0.1	0	The difference between the Maximum Temperature of Warmest month and the Minimum Temperature of Coldest month
bio8	mean daily mean air temperatures	°C	0.1	-273.15	The wettest quarter of the year is determined (to the nearest month)

	of the wettest quarter				
bio9	mean daily mean air temperatures of the driest quarter	°C	0.1	-273.15	The driest quarter of the year is determined (to the nearest month)
bio10	mean daily mean air temperatures of the warmest quarter	°C	0.1	-273.15	The warmest quarter of the year is determined (to the nearest month)
bio11	mean daily mean air temperatures of the coldest quarter	°C	0.1	-273.15	The coldest quarter of the year is determined (to the nearest month)
bio12	annual precipitation amount	kg m ⁻²	0.1	0	Accumulated precipitation amount over 1 year
bio13	precipitation amount of the wettest month	kg m ⁻²	0.1	0	The precipitation of the wettest month.
bio14	precipitation amount of the driest month	kg m ⁻²	0.1	0	The precipitation of the driest month.
bio15	precipitation seasonality	kg m ⁻²	0.1	0	The Coefficient of Variation is the standard deviation of the monthly precipitation estimates expressed as a percentage of the mean of those estimates (i.e. the annual mean)
bio16	mean monthly precipitation amount of the wettest quarter	kg m ⁻²	0.1	0	The wettest quarter of the year is determined (to the nearest month)
bio17	mean monthly precipitation amount of the driest quarter	kg m ⁻²	0.1	0	The driest quarter of the year is determined (to the nearest month)
bio18	mean monthly precipitation amount of the warmest quarter	kg m ⁻²	0.1	0	The warmest quarter of the year is determined (to the nearest month)
bio19	mean monthly precipitation amount of the coldest quarter	kg m ⁻²	0.1	0	The coldest quarter of the year is determined (to the nearest month)
gdgfgd0	First growing degree day above 0°C	julian day	-	-	First day of the year above 0°C

gdgfgd5	First growing	julian	-	-	First day of the year above 5°C
	begree day above 5°C	day			
gdgfgd10	First growing	julian	-	-	First day of the year above 10° C
	10°C	day			10 C
fcf	Frost change frequency	count	-	-	Number of events in which tmin or tmax go above, or below 0°C
gdd0	Growing degree days heat sum above 0°C	°C	0.1	0	heat sum of all days above the 0°C temperature accumulated over 1 year.
gdd5	Growing degree days heat sum above 5°C	°C	0.1	0	heat sum of all days above the 5°C temperature accumulated over 1 year.
gdd10	Growing degree days heat sum above 10°C	°C	0.1	0	heat sum of all days above the 10°C temperature accumulated over 1 year.
gdd1gd0	Last growing degree day above 0°C	julian day	-	-	Last day of the year above 0°C
gddlgd5	Last growing degree day above 5°C	julian day	-	-	Last day of the year above 5°C
gddlgd10	Last growing degree day above 10°C	julian day	-	-	Last day of the year above 10°C
gsl	growing season length TREELIM	number of days	-	-	Length of the growing season
gsp	Accumulated precipiation amount on growing season days TREELIM	kg m ⁻²	0.1	0	precipitation sum accumulated on all days during the growing season based on TREELIM (https://doi.org/10.1007/s00035- 014-0124-0)
gst	Mean temperature of the growing season TREELIM	°C	0.1	-273.15	Mean temperature of all growing season days based on TREELIM (https://doi.org/10.1007/s00035- 014-0124-0)
lgd	last day of the growing season TREELIM	julian day	-	-	Last day of the growing season according to TREELIM (https://doi.org/10.1007/s00035- 014-0124-0)
fgd	first day of the growing season TREELIM	julian day	-	-	first day of the growing season according to TREELIM (https://doi.org/10.1007/s00035- 014-0124-0)
ngd0	Number of growing degree days	number of days	-	-	Number of days at which tas $> 0^{\circ}C$

ngd5	Number of	number	-	-	Number of days at which tas >
C	growing degree	of days			5°C
	days				
ngd10	Number of	number	-	-	Number of days at which tas >
	growing degree	of days			10°C
	days	5			
kg0	Köppen-Geiger	category	-	-	Köppen Geiger
C	climate				
	classification				Koeppen, W., Geiger, R.
					(1936): Handbuch der
					Klimatologie. Gebrüder
					Borntraeger, Berlin. Wikimedia.
kg1	Köppen-Geiger	category	-	-	Köppen Geiger without As/Aw
	climate				differentiation
	classification				
					Koeppen, W., Geiger, R.
					(1936): Handbuch der
					Klimatologie. Gebrüder
					Borntraeger, Berlin. Wikimedia.
kg2	Köppen-Geiger	category	-	-	Köppen Geiger after Peel et al.
	climate				2007
	classification				
					Peel, M. C., Finlayson, B. L.,
					McMahon, T. A. (2007):
					Updated world map of the
					Koeppen-Geiger climate
					classification. Hydrology and
					discussions $A(2)$ $A20$ $A73$ Error
					Access
kg3	Köppen-Geiger	category			Wissmann 1030
KgJ	climate	category		-	Wissinann 1757
	classification				Wissmann H (1939): Die
	classification				Klima-und Vegetationsgebiete
					Eurasiens: Begleitworte zu
					einer Karte der Klimagebiete
					Eurasiens, Z. Ges. Erdk. Berlin.
					p.81-92.
kg4	Köppen-Geiger	category	-	-	Thornthwaite 1931
U	climate	0.			
	classification				Thornthwaite, C. W. (1931):
					The climates of North America:
					according to a new
					classification. Geographical
					review, 21(4), 633-655. JSTOR.
kg5	Köppen-Geiger	category	-	-	Troll-Pfaffen
	climate				
	classification				Troll, C. & Paffen, K.H. (1964):
					Karte der Jahreszeitenklimate
					der Erde. Erdkunde 18, p5-28
					Free Access.

scd	Snow cover days	count	-	-	Number of days with snowcover calculated using the snowpack model implementation in from TREELIM (https://doi.org/10.1007/s00035- 014-0124-0)
swe	Snow water equivalent	kg m ⁻²	0.1	0	Amount of luquid water if snow is melted
npp	Net primary productivity	g C m ⁻² yr ⁻¹	0.1	0	Calculated based on the 'Miami model', Lieth, H., 1972. "Modelling the primary productivity of the earth. Nature and resources", UNESCO, VIII, 2:5-10.
pr	precipitation amount	kg m ⁻²	0.1	0	"Amount" means mass per unit area. "Precipitation" in the earth's atmosphere means precipitation of water in all phases.
tasmax	mean daily maximum 2m air temperature	°C	0.1	-273.15	daily maximum air temperatures at 2 metres from hourly ERA5 data
tas	mean daily air temperature	°C	0.1	-273.15	daily mean air temperatures at 2 metres from hourly ERA5 data
tasmin	mean daily minimum air temperature	°C	0.1	-273.15	daily minimum air temperatures at 2 metres from hourly ERA5 data

7.2. Monthly

shortname	longname	unit	scale	offset	explanation
pr	precipitation amount	kg m ⁻² month ⁻ ¹ /100	-	-	"Amount" means mass per unit area. "Precipitation" in the earth's atmosphere means precipitation of water in all phases.
tasmax	mean daily maximum 2m air temperature	K/10	-	-	daily maximum air temperatures at 2 metres from hourly ERA5 data
tas	mean daily air temperature	K/10	-	-	daily mean air temperatures at 2 metres from hourly ERA5 data

mean daily	K/10	-	-	daily minimum air
minimum air				temperatures at 2 metres from
temperature				hourly ERA5 data
r	nean daily ninimum air emperature	nean daily K/10 ninimum air emperature	nean daily K/10 - ninimum air emperature	nean daily K/10 ninimum air emperature